p = : ® .
Buktlamakie Walter Borst Fon:+49 (0) 4721 6985100
Bo "t ﬁ u K\, e m m al @ﬁ’ Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de
Embedded Solutions ;747> Cuxhaven, GERMANY Home: https://www.borst-automation.de/

Technical Data Sheet

Hart Slave Stack C++ 7.6

Technical Data Sheet

C++ Source Code for an Embedded Firmware Module with
the following Properties
e No external dynamic memory management. The
amount of reserved RAM remains constant.
e The number of objects is determined at compile
time and startup.
e No operating system is required to integrate the
software. Timer and serial interrupts are enough.
e Simple asynchronous user interface to encapsulate
the time-critical part.
The implementation is based on the Hart Documents in:
HART Communication Protocol Specification, HCF_SPEC-13, FCG TS20013 Revision 7.09,
Release Date: 06 January 2023

Details for the Hart Protocol are provided via the following link:
https://www.fieldcommagroup.org/technologies/hart.

Hart Slave Stack C++ 7.6 .cccimiimirnirnirssras s s s ssssssssssssssssssssssssssnnnsnnnsnns 1
B3 8 oo X LT ot o o 1 2
Implemented Commandsvivviiiiii i reas 2

N gl T (=Y [= 3
Hart Slave C++ Code.uiiumiiiiiimiinnnnnnnninnnnsssssnssannsssssssssnnssssssnssnnnnnnsnnnn 4
[EY =] gl 1 1 (= =T o 4

4 o ol 1 ¥ o o o o] 1= 4

(DY = I N A =] = [l P, 6

Coding ConsSiderationsociuiiiiiii i 6
Hardware AbStraction ..ovuvvviieii i i i e s s e rrnae e ranaees 7
Embedded System RequiremMents......c.ccviiiiiiiiiiiiiiic i 7
(@foTo 19 Ts I @o] 0 1V7=T a1 u o] o IR 7
Visual Studio 2022......ccciiiiiii i v i s s s s s s e s ra s n s rannannn 8
LI 0 = 1YL . = 8
PrerequUISIteS v 8
Development Directory Structureccooviiiiiiiiiicii e 8

Getting Started ... s 8

B =T o 1 0} (=] 1= oL 9

Y o o = 3 e [11
=Y = o 1 11

[X0 }70V0 3 | e =T IR e r= 1 o (o o TS 11
LAl ISSUBS ittt e 12
CoNfOrMILY o e 12

COPY G e e 12

I TR E= T o =1 1 0 2 P 12

Implemented Commands Hart Slave C++ 7.6 / 23.6.2024 Page 1 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/technologies/hart

Buklamakian Walter Borst
Bo "t ‘ INTRIRRAREMEN Kapitaen-Alexander-Strasse 39
Embedded Solutions 77472 Cuxhaven, GERMANY

Technical Data Sheet

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de

Introduction

Implemented Commands

| Description

| Remarks

Universal Commands

0 Read Unique Identifier

See also Command Summary
Specification

Read Primary Variable

Read Loop Current And Percent Of Range

Read Dynamic Variables And Loop Current

Read Loop Configuration

Read Dynamic Variable Classifications

Currently only the standard device

1
2
3
6 Write Polling Address
7
8
9

Read Device Variables with Status

variables are supported: 244, 245, 246,
247,248,249,0,1, 2, 3.

11 | Read Unique Identifier Associated With Tag

12 | Read Message

13 | Read Tag, Descriptor, Date

14 | Read Primary Variable Transducer Information

15 | Read Device Information

16 | Read Final Assembly Number

17 | Write Message

18 | Write Tag, Descriptor, Date

19 | Write Final Assembly Number

20 | Read Long Tag

21 | Read Unique Identifier Associated With Long Tag

22 | Write Long Tag

38 | Reset Configuration Change Flag

48 | Read Additional Device Status

The slave module saves a copy of the
last additional device status sent for
each master and compares it with the
bitstream provided by the user
application.

Common Practice Commands

33 | Read Device Variables

34 | Write Primary Variable Damping Value

35 | Write Primary Variable Range Values

49 | Write Primary Variable Transducer Serial Number

54 | Read Device Variable Information

Currently only the standard device
variables are supported: 244, 245, 246,
247,248,249,0,1, 2, 3.

108 | Write Burst Mode Command Number

Commands 1, 2, 3 and 9 are currently

109 | Burst Mode Control

accepted. Burst messages are not (yet)
supported.

512 | Read Country Code

513 | Write Country Code

I consider the now implemented set of commands to be the minimum that must be available
in a Hart slave. However, I also recommend making all important functions of a slave
accessible via universal and common practice commands and not using user-specific
commands. In this case it is not necessary to provide a device description. This saves

development time and development costs.

Implemented Commands Hart Slave C++ 7.6 / 23.6.2024 Page 2 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

0y 166 Walter Borst Fon:+49 (0) 4721 6985100
Bo "t o Lol b d % Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de
Embedded Solutions 27472 Cuxhaven, GERMANY Home: https://www.borst-automation.de
Technical Data Sheet
[OSAL & C++ to C# Test Adapter]
_________________ Y 3 . K
. White Box’ Test Software
i User Firmware and | s
L e e =
1 Data ,I """ Update Syve Daty Chew Dicyly Fececd O Mot
S s s ietace | Meethet | Taredieer | Decs Dewes Vastle | Addboes S Opbom
\ Portable it ace letinnge Hat Faaering Hurt Commuacation i m
User Interface Hart Condin | oo * Regums Praarrbier 8 Pl | frwrve bumbers @ &
y, Slave ot Addaee | A0 > Leporcs Praambdes 4 B Decoted Des @ Tererg [B
N\ o ot Mdacke [Mot Erabie Vite Proteted
Command I D ahetn (1 it Hart Slave
Interpreter i R T~
- y, o i

Timecritical LETENINN WX UF B0 IR (45100 B% 68 04 ShCadion) &

\ .
Hart Slave Area z ’ LACERITY TT TY PY PYINCI20 ¥ I8 24 T91Cedi0fl 4
Uart Protocol e

\ J 1 ms time Sl { 2 . =
tick , .
HAL]
[coms SN it " o oo AJ
N J N J
Y Y
C++ C#

The package Portable Hart Slave includes all sources needed to represent the slave part of
the Hart protocol. The package is written in standard C++ and does not use any direct
connection to a system environment. Data link layer, application layer (command
interpreter) and network management of the Hart protocol are implemented. The connection
to the outside occurs via three interfaces: The User Interface, a Time Trigger and the HAL to
the Uart interface.

I used the C# environment to debug the Hart slave code during development. In fact, it is
not(!) a simulation that is used here. The firmware is simply embedded in a Windows
environment that allows the code to run in real time(!). In this way, all functions of the
implementation can be analyzed in detail. The analysis of the temporal processes takes place
in the range of milliseconds.

The C# software (White Box Test) was developed to create a transparent user interface for
visualizing the data and communication processes. Visual Studio 2022 and .NET 6.0 were
used to keep the programming effort within limits.

The command interpreter is triggered from the C# environment, but this happens within a
'real' thread and not within a worker thread from .NET:

CommandInterpreter = new Thread(ExecuteCommandInterpreter);
CommandInterpreter.Priority = ThreadPriority.Highest;
CommandInterpreter.Start();

and in endless loop of the thread:

result = (EN_Bool)HartSlaveDLL.BAHASL_WasCommandReceived();
if (result == EN_Bool.TRUE8)
{
// Simulate typical application
Thread.Sleep(20);
command = HartSlaveDLL.BAHASL_ExecuteCommandInterpreter();

Architecture Hart Slave C++ 7.6 / 23.6.2024 Page 3 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Automation

Technical Data Sheet

Walter Borst
Bo "t @8R Kapitaen-Alexander-Strasse 39
Embedded Solutions 37472 cuxhaven, GERMANY

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de/

Hart Slave C++ Code

User Interface

Public Functions

The following functions are realized in the module
HartS_UartIface.cpp in the class CUartSlave. In the DLL
interface for the test client the function names are preceeded by

BAHASL_.

Declaration

Description

Operation

EN_Bool OpenChannel(
TY_Word port_number_,
EN_CommType type_);

The function allocates the selected com port if possible and starts its own working
thread for accessing the Hart services. The port_number_ is limited to the range of
1 .. 254. The selected communication type (type_) should be UART in this version
of the paket. The function returns TRUES if successful.

In the present implementation only a single channel is possible. Thus no channel
handle is required.

void CloseChannel();

It is required to call this function at least when the application is terminating.

Data Interface

void GetConstDataHart(
TY_ConstDataHart* const_data_);

Copies constant data from the Hart slave area to the test application area.

void SetConstDataHart(
TY_ConstDataHart* const_data_);

Copies constant data from the application area to the Hart slave area.

void GetDynDataHart(
TY_DynDataHart* dyn_data_);

Copies dynamic data from the Hart slave area to the test application area.

void SetDynDataHart(
TY_DynDataHart* dyn_data_);

Copies dynamic data from the application area to the Hart slave area.

void GetStatDataHart(
TY_StatDataHart* stat_data_);

Copies static data from the Hart slave area to the test application area.

void SetStatDataHart (
TY_StatDataHart* stat_data_);

Copies static data from the application area to the Hart slave area.

Command Interpreter

EN_Bool WasCommandReceived();

The function returns FB_Bool:: TRUES if the Hart protocol has recently (a few
milliseconds ago) received a command.

TY_Word ExecuteCommandInterpreter();

This function calls the command interpreter in the slave to process any new data.
If the command was recognized and executed, the function returns the number of
the command. If this was not the case, the value Oxffff is returned.

Encoding

void PutInt8(
TY_Byte data_,
TY_Byte offset_,
TY_Byte* data_ref_);

Insert an integer 8 into the byte array buffer pointed to by data_ref_ starting at the
position offset_.

void PutInt16(
TY_Word data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert an integer 16 into the byte array buffer pointed to by data_ref_starting at the
position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

User Interface

Hart Slave C++ 7.6 / 23.6.2024

Page 4 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Auvtomation
ot’ Embedded Solutions

Technical Data Sheet

Walter Borst
Kapitaen-Alexander-Strasse 39
27472 Cuxhaven, GERMANY

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de/

void PutInt24(
TY_DWord data_,
TY Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert an integer 24 into the byte array buffer pointed to by data_ref_ starting at the
position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void PutInt32(
TY_DWord data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert an integer 32 into the byte array buffer pointed to by data_ref_ starting at the
position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void PutInt64(
TY_DWord data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert an integer 64 into the byte array buffer pointed to by data_ref_ starting at the
position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void PutFloat(
TY_Float data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert a single precision IEEE 754 float value into the byte array buffer pointed to
by data_ref_ starting at the position offset. Start with the most significant byte if
endian is MSB_FIRST(0), which is the Hart standard.

void PutDFloat(
TY_DFloat data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert a double precision IEEE 754 float value into the byte array buffer pointed to
by dataRef starting at the position offset. Start with the most significant byte if
endian is MSB_FIRST(0), which is the Hart standard.

void PutPackedASCII(
TY_Byte* asc_string ref_,
TY_Byte asc_string len_,
TY_Byte offset_,
TY_Byte* data_ref);

Insert a string (asc_string_ref) of the length of asc_string_len_ in packed ASCII
format into the byte array buffer pointed to by data_ref_ starting at the position
offset_. It is recommented that asc_string_len_ is an ordinary multiple of 4.

void PutOctets(
TY_Byte* stream_ref_,
TY_Byte stream_len_,
TY_Byte offset_,
TY_Byte* data_ref);

Copy a number of stream_len_ bytes into the byte array buffer pointed to by
data_ref_starting at the position offset_.

void PutString(
TY_Byte* string_ref_,
TY_Byte string _max_len_,
TY_Byte offset_,
TY_Byte* data_ref);

Copy a string from string_ref_ to data_ref_. The actual number of characters
stored cannot be greater than string_max_len_. If the string contains a null, the last
character saved is a null character if this does not exceed the string_max_len_
limit.

Decoding

TY_Byte PickInt8(
TY_Byte offset_,
TY_Byte* data_ref_);

Return the value of the byte in the byte array buffer pointed to by data_ref from
the position offset_.

TY_Word PickInt16(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the integer 16 from the byte array buffer pointed to by
data_ref_ from the position offset_. Assume that the most significant byte is the
first if endian is MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt24(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the integer 24 from the byte array buffer pointed to by dtaRef
at the position offset. Assume that the most significant byte is the first if endian is
MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt32(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the integer 32 from the byte array buffer pointed to by
data_ref_from the position offset_. Assume that the most significant byte is the
first if endian is MSB_FIRST(0), which is the Hart standard.

TY_UInt64 PickInt64(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the integer 64 from the byte array buffer pointed to by
data_ref_from the position offset_. Assume that the most significant byte is the
first if endian is MSB_FIRST(0), which is the Hart standard.

TY_Float PickFloat(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the single precision IEEE754 number from the byte array
buffer pointed to by data_ref_from the position offset_. Assume that the most
significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

User Interface

Hart Slave C++ 7.6 / 23.6.2024

Page 5 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

BO"te;bedded Solution:

Walter Borst
Kapitaen-Alexander-Strasse 39
27472 Cuxhaven, GERMANY

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de

S

Technical Data Sheet

TY_DFloat PickDFloat(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the double precision IEEE754 number from the byte array
buffer pointed to by data_ref_ from the position offset_. Assume that the most
significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

void PickPackedASCII(
TY_Byte* string ref_,
TY_Byte string_len_,
TY_Byte offset_,
TY_Byte* data_ref);

Generate a string and copy it to the buffer pointed to by sb. The final string should
have the length string_len. The packedASCII source is a set of bytes in the byte
array buffer pointed to by data_ref_, starting at index offset_.

Note: The string length has to by a multiple of 4 while the number of
packedASCII bytes is a multiple of 3.

void PickOctets(
TY_Byte* stream_ref_,
TY_Byte stream_len_,
TY_Byte offset_,
TY_Byte* data_ref);

Copy a number (numOctets) of bytes from the byte array buffer pointed to by
dataSource to the user buffer pointed to by dataDestination.

void PickString(
TY_Byte* string_ref_,
TY_Byte string _max_len_,
TY_Byte offset_,
TY_Byte* data_ref_);

The function reads a string from a buffer (data_ref) starting at index offset_ and
stores the characters in string_ref_. The string buffer is read from until a null
character appears or string_max_len_ is reached. If possible, the null character is
also saved.

Internal

void FastCyclicHandler(TY_Word time _ms_);

Although this function is not accessible to the test client, it is required for the
operation of the Hart protocol. The function must be called by a separate task
approximately every millisecond to enable timing in the communication.

The time_ms parameter indicates how many milliseconds have passed since the
last call. Usually this should be a value of 1 in most cases.

Data Interface

Coding Consid

&~ Low amount of memory.

%" The user needs source
code.

The data interface provides three different types of data that
can be written or read by the user. A structure is provided for
each data type, which can be found in the file
WbHartS_Structures.h.

Constant data does not change. In most systems it is stored in
flash memory and cannot be written.

Dynamic data is data that can always change. This includes
measured values and status information.

Static data is used to configure a device. It is usually changed
by external access. Whenever static data is changed, the
configuration change flag must be set in Hart and the
configuration change counter in Hart must be incremented.

erations

Microcontrollers which are used today for HART devices are at
least 16 Bit microcontrollers. Otherwise the complexity of the
measurement and number of parameters could not be
managed.

The amount of memory is always critical because software kind
of behaves like an ideal gas. It uses to fill the given space.
Nevertheless, the coding of the Hart Slave was done as carefully
as possible regarding the amount of flash memory and RAM.

The Hart Protocol requires a strict timing specially for burst
mode support and the primary and secondary master time slots.
To provide the optimum transparency to the user to allow all
kinds of debugging and to give the opportunity to optimize code
in critical sections, the Hart Slave Firmware is not realized as a
library but delivered as source code.

Coding Considerations

Hart Slave C++ 7.6 / 23.6.2024 Page 6 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de

Walter Borst
Kapitaen-Alexander-Strasse 39
27472 Cuxhaven, GERMANY

1] N
Bo "tE-nbedded fmlutiov'\s

Technical Data Sheet

Hardware Abstraction

® OSAL is including the A Hardware Abstraction Layer is needed to design the interface
HAL. of a software component independent from the hardware
platform. In this very small interface of the Hart master a
distinction of HAL and OSAL was not made. Therefore only an
Operating System Abstraction Layer is defined which is covering
all the needs of an appropriate HAL.

Embedded System Requirements

It is difficult to estimate the system requirements for targets
based on different micro controllers and different development
environments. The following is therefore giving a very rough
scenario for the target system estimated resources.

Item Requirement/Size Comment

RAM 32k Depends very much on the addressing structure of the
controller and the used compiler and linker.

ROM (Flash) 100k

Timing 1-2 ms Timer 2 ms is the minimum requirement, 1 ms would be much

interrupt better.

50 ms cyclic call This is needed to run the command interpreter.

from task level

I/0 UART and Hart MODEM
Rx and Tx functions

Carrier detection would be helpful but is not required.

Only a few standard library functions are required. There is

System Simple math +-*/
memcpy () no special need for multi tasking, messaging or semaphores.
memset ()
memcmp ()

1 ms timing
resolution

Table 1: Embedded System Requirements

Coding Conventions

Regarding this issue, I have only defined some formats that makes the scope of a label
clearer. It's just to make the code easier to read. This simple type of coding convention can
be used in both C++ and C#.

Pascal case

local_variable

function_param_

m_member_var

mo_member_object

Variable with local scope

A function parameter has
a tailing underscore

Basic type private
member variable

Complex object member

s_member_var

so_member_object

Basic type static private
member variable

Complex static object
member

Camel case

PublicVariable

PublicObject

AnyMethod

Variable with public or
internal scope

Object with public or
internal scope

No difference between
public and private

Hardware Abstraction

Hart Slave C++ 7.6 / 23.6.2024

Page 7 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

p = : ® .
Buktlamakie Walter Borst Fon:+49 (0) 4721 6985100
Bo "t ﬁ u K\, e m m al @ﬁ’ Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de
Embedded Solutions ;747> Cuxhaven, GERMANY Home: https://www.borst-automation.de/

Technical Data Sheet

Visual Studio 2022

Test Environment

Solution Explorer There are only one project in this solution. The C++ Hart
Al o - @ | #[= Slave is encapsulated in the HartSalveDLL project.
[Search Solution Explorer (Ctrl+) The solution is directly in the path on which you copied the

3 Solution 'CppHartSlave-7.6' (1 of 1 project) paCkage to.
b EJ Solution ltems
P HartSlaveDLL

Prerequisites
Microsoft Visual Studio Community 2022 (64-bit) ~ Microsoft .NET Framework The solution must be opened with VS
Version 17.9.6 Version 4.8.09032 : :
@ 2022 Microseft Cerporation, @ 2022 Microseft Corporation, 2022. However’ the Communlty version
All rights reserved. All rights reserved. is sufficient. There are no further

requirements.

Development Directory Structure

s Name The project for the Hart Slave in C++ can be
01-Docu 01-Shell found in the directory:
02-Device | 02-08SAL \02-Device\02-Specific\01-WinDLL\O1-Hart\
01-Generic 03-Build 01-Slave.
02-Specific (] HartSlaveDLL.vexproj However, most of the C++ sources used are
01-WinDLL U] HartSlaveDLLvexprojilters located in the directory .\02-Device\01-Generic\
01-Hart (3 HartslaveDLLvexproj user and its subdirectories.
01-Slave
11-Mrf32832
01-Docu 2] BaHartSlave-7.6.dll The test software is only be found as executable
02-Device i BaHartSlave-T.6.exp in the path 03-DebugBech. The executable file
01-Generic L] BaHartSlave-7.6.ib TestCppSlave.exe and the simulation DLL
02-Specific | %i:l':::;‘::rj‘;zb .. BaHartSlave-7.6.dll are both located here.
03-Test CERTERAESEET When you start debugging the executable ist
@ ReadMe.txt . . .
01-Windows) System Runtime Caching.dil started angl loading the dll v_vhlch is
01-Docu) TestCppSiave.deps,son respresenting the slave device.
02-Apps [] TestCppSlave.dil
01-Hart [] TestCppSlave.dil.config
03-DebugBench & TestCppSlave.exe

—_

Getting Started

1. Unzip the file hart-slave-source-code-7.6.1.zip into a
directory of your choice.

2. Open the solution CppHartSlave-7.6.sIln with Visual
Studio 2022. It has to be 2022. Other versions are not
supported yet. Unless you have 2022 not installed on
your computer. You can download it from microsoft:
https://visualstudio.microsoft.com/de/downloads/.

3. The community version is sufficient enough and free of
charge.

Perform a 'Build All'.
5. Start debugging and investigate the source code

Test Environment Hart Slave C++ 7.6 / 23.6.2024 Page 8 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://visualstudio.microsoft.com/de/downloads/

M Walter Borst Fon:+49 (0) 4721 6985100
Bo "t nutom@('@n Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de

Embedded Solutions 37472 Cuxhaven, GERMANY Home: https://www.borst-automation.de/

Technical Data Sheet

Test Interface

When the executable file is
Updrte Saeefia - CewDdtey - Resion - des | gtarted, the container DLL for
| Irtaface | Mertiter Tramidecer Device DevioeVagbles | Adutionsl 2atus Opbicos . .
the slave is automatically

Inkartece Setings Hal Framiny Mart Coemmnicatam View
ComPert: COMS . Beauet Prearites @ Freambles (] FrameNemtens (@ Addvess loaded.
R . el 8 Decoded Dets @ Timing mauwces | The work surface is divided into
Brute 1700 SuestMode @ Hes Eneled) Wiste Drctactast two halves.

[stonsen Caesss Hart Slave 7.6.1 Settings are made in the tab

area, while the lower area is
reserved for a monitor that
shows the communication

B
"
b
-
o
K
B

4

21341 QO0LLODD0IZE

LT4E-LETIGTT T IT FT TTIRZI00 PO 00 34 OBt LI L

ZACKPITE TT T IT TFISS005 ¥3 03 34 03(Cnd L) T) Q10041000015 1078 mwkezs el process.
et b A R R T T While the following tabs mostly
INVIACKRLIY YT JY FY YFIZ€I02 ¥¥ 03 94 02/Cmt 3136) 91002100001 Surz:1¢ :4".'.: e e deal Wlth the slave data, the

SV PTL has - inputs in the interface have a
SLANLETERIIT I SY RY SRIODIO2 Y O3 4 I I T IDV: 288,340, 5,0,¢4,0,. 0170 . -
& fairly direct effect on the

Ay Nos

TIELRCHTITY TY FY PT TYIMI0T ¥ 01 34 0U(Ced 31651 9100300001 Extasded Sevicy Trarws 10303090
o) o A 30 * running software. For example,
vl " vy . it is possible to activate burst
o4 e s - mode without having to use the
o ouae ™ SemT HANNE 1135 30 48 Hart command 109.
| COMS | Marsterieg sctos | Sateh ecars oH o= s moneccing @ ocece J

Screenshot 1: The Tab 'Interface’

Data Exchange

Update Slave Data The following tabs deal with the transmitter data. If this data is
wiables | Additional Status | Optio edited, this is indicated by a yellow color. The menu button also
turns yellow and must be clicked for the change to take effect in

Message: |MESSAGE

the slave.

Messsge: [MOINMONMOIN If a parameter is changed by a master connected to the slave, this
change appears in the display and the parameter in question is
colored red

bk The tab 'Identifier' mainly deals

e Spetion - Cew Dol Reon e\ with data related to command 0.

Werdace | idomfie Tremiducer | Deoce | OewceVarables | Addtionsl Stats | Cptoss

Dewiie Ype (Table 1)1 100055 | Segrtabeg (Tatle 108 0 | Conlig Gunge Counter ;ﬁi:-'.\": Profile (Tobsle 573 10O
Dwvics Revaon Lovet |1 | Piagy (Tatle 11y [0 Extardes Stetas (Tutke 17) 000 Outain
— . - Cngd Db
Sofrwwe Revsion Lever 2 Device Unigue 10 ey 030005 Moatactures (edy; fuooep | S48 B
byt e o labieE Siked
Hardwars Rrvoos Levet |1 | Last Dew Varratle Code 1 | Cretritusor {Tabdali: [u(0E) I lD kD
ARTNIIT BT AT IT Mol Ond O
W SACERTT IT IT AT FTIGCI0 Cod 01341 01 00LL0O00
14
5| LOMS | Masasring active | Smitch racand o te s menstasing. @ toove

Screenshot 2: The Tab 'Identifier'

Test Interface Hart Slave C++ 7.6 / 23.6.2024 Page 9 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst
Kapitaen-Alexander-Strasse 39
27472 Cuxhaven, GERMANY

Automation
Embedded Solutions

Borst

Technical Data Sheet

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de/

Pt Sam 1A ——f %
Updute Seve Do CleawDupley Feopud O dbawe
Wedace | Ml |[Tramdacer | Desice | Dewice Vorlabies | Addthos Ruees | Oprioes
Serial Haerisess &_j Uk viar | THencsom [Uem -| Fags fiovooion
Upperlimet: (33000 | (o UppesRange. (100 Lowes Sange 00 Damping: 12 B
Lowestmn 00| wbw Wike Protect. [Oenm | Alaw Ssect [Neoei2 | Tow2e
Mo Spae 1000
~==>35TXP ITme 21 0) 1
A;;IDN.'!‘IN 2138} 31203120001096/ Manl/ Dyvd €2/ TR /MaceT/Txl /Bl /M4 /TINT010200/10 003 OxDE 0x02

afRcep - Lm0y - [V OZpthine : 2/XxeDavaines : 05050000
Harald

JE0/TakDipeID: 001/ Frotile 01DEI

3 Txid Trars, Mors Trepus
$55I/LETED |CmelE | B oy
.
ITCLACKPICREIAIIE) TIT0PLT020] Sumatazitun. S35I5Y/ Tenslin: 300 te BI0) mhez/MinSpen 100 mrerilli
EEN Maze Ttarus
2711, 18T%8 1 Cdln | 04 el
INFIACKRICWEL 1200 2120012000 1t Used/Linwes/Seage:d 32 10 chez/Dempizg: La/MrFroa: Ma/300s108:180)

s More Thstus

Screenshot 3: The Tab 'Transducer’

;:" ot Bart {«v Samew ¥ (A1
Update Slave Datx CleniDipley Record O Aboue
| Wedace | Mecoter | Tesnsguosr |[Dwvics | Dewcevarishies | Addwscea Statui | Optiorv
Long Tag: {ii'co-w'_"' Iv2 Latin- | | Meige: t&i’d’ﬁﬂ"fm‘ ER CHARACTERS |
Shot Tag: fa"a’niw]'s‘] Frval Aserrizhy Nurrdser: f""“ [

Descrigtion: 16 CH DESCRIPTLA | Courty Code: e R

Do] o] v |

~==-LETER |G V)
I
ATACER ICml i 1A
W
TAGLLETER ICmaid 1 W)
Ange
AVSLNCKER |Cebinian)
"

s

JI00L100301 B2 CAFITAL LETTEE OOAMTIR
sle Fraan, Mure Fhesie
L

130

Q100030000 SCHE TN/ Le OF SEACHIPION /Date L7 3030100
Waee Fuass

LOAEs LETXR IOt in 1) e
(1]
SULACEN ICaE) A 0100010000 Final sl Mussay TITITY LS
e Mese Sratus

EAAARTER Cmaddl W 1R

[
JRCLACKR |Cad201A4) 01000100001 Lay Tag 32 Chasactess L lasia-l
“wi

2 ol
Moz sStatus

[e - -
e snetn ol s
| Wietace | Meotitr | Trmducer Device | Devce Variaties | AddtionsiSunes | Opsioss
| Beor (204 Canerk | 245 I 0 246 P, 30 30 PiQ 2
Qo= 0 Cony M Clus Z] Oz F?___ Cluss: D Class: E]
o o I o o M T
" * ma Urer: | metes Une. mbar e i3] - unt '€ .|

ObGcod iBid ©OOGood (Bad ©OGocd OB Obcor DSad O Gued DBaf O Good O ad

2|

| The tab 'Transducer' mainly deals

with data related to the commands
14 and 15.

' The tab 'Device' mainly deals with

data related to the commands 12,
13, 15, 16 and 20.

The 'Device Variables' tab
provides access to the data
needed to implement device
variables. Currently, only device
variable codes in the range 244-
249 and 0..3 are accepted. These
are the only required device

s IETXRICHE B T IO 244, 240, 346 247 240 200 €10

P 1ACKRICed BI€E| 0100010000) Extanded Device FTates 90904030

IV 244/ Zlam ® TE N Poatue: 11300000
o 248 4 Class o 15 = Scatua:lld0030
W 244/ Clame ©o 7.5 mezerz / Staton:lldOf0a0
DV 247 J Clasx o 4338 smbac / Szatus:ild0I0d0
DV 242 / Tlamn 7 i kg/l / Szatus el ol
DV 242 / Clam “ 23 ' Status:iladme
o €/ Clame 2/ Fa¥ noz Uaes Status:J0L13000
Tise Svamp 4C47TI04 1000 mallé

e Travne

variables.
Of course, further variables for
the user are possible at any time.

Test Interface

Hart Slave C++ 7.6 / 23.6.2024

Page 10 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

M Walter Borst Fon:+49 (0) 4721 6985100
Bo "t ﬁ UQQm ﬂ&l@ﬂ Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de
Embedded Solutions 5747 Cuxhaven, GERMANY Home: https://www.borst-automation.de/

Technical Data Sheet

'- : 1 This is about command 48. As already
UpdteSive Dt odorane | mentioned elsewhere, the slave manages

Mierdace Mertils Transduos Device DevceVarsbls | & Additicnsd Satus | Optiore

the responses to the two masters separately
Beien Spuciic S5 e[t e e [eaee [L and stores which response it has sent to a
Saednrda 3 jweon {ooeoe oo N - .

I e L master. If something changes in the

alog € Seurett 0020 | akeg C Flent [0090 . .
| =L T additional status, the software knows which
ommai e S e _ master it affects because it can compare it
T with the copies.
ITCARCKER 10 21341 21000100001 394 Merd el dNS DA T 1/ 5/ 3 TAM0I00/2
~301ETED Cadan 1 W
-Z: LACER 1ICeden 13T
Em;yn. o, .‘.' e :, o lr ..' ..m J

Screenshot 6: The Tab 'Additional Status'

Appendix

Internet Links

Specification Documents

HART Specifications | FieldComm Group
MODEMs

RS 232 Modem Microflex

USB Modem Endress + Hauser

Viator USB Modem Pepperl+Fuchs
Ethernet-APL

Advanced Physical Layer FieldComm Group
Ethernet - To the Field Ethernet APL Organisation
HART-IP Developer Kit FieldComm Group

Download Location

The software package described in this document can be
downloaded via the following link:

https://www.borst-automation.com/downloads/hart-slave-source-code-7.6.1.zip

Internet Links Hart Slave C++ 7.6 / 23.6.2024 Page 11 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/hart-specifications
https://microflx.com/products/rs-232_hart?variant=792035143
https://www.de.endress.com/de/messgeraete-fuer-die-prozesstechnik/systemkomponenten-rekorder-data-manager/hart-usb-interface-commubox-fxa195?t.tabId=product-overview
https://www.pepperl-fuchs.com/germany/de/classid_1362.htm?view=productdetails&prodid=103586
https://www.fieldcommgroup.org/technologies/ethernet-apl
https://www.ethernet-apl.org/wp-content/uploads/2022/08/Ethernet-APL_Ethernet-To-The-Field_EN_FINAL_June-2021.pdf
https://store.fieldcommgroup.org/products/hart-ip
https://www.borst-automation.com/downloads/hart-slave-source-code-7.6.1.zip

Walter Borst Fon:+49 (0) 4721 6985100

Bo " Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de
27472 Cuxhaven, GERMANY Home: https://www.borst-automation.de/
Technical Data Sheet
Legal Issues
Conformity

This software package was developed to the best of my
knowledge and my belief. The basis is the specifications of the
Hart Communication Foundation in version 7.9.

However, it cannot be guaranteed that the software included in
this package meets the HCF specifications in all required
respects.

It is only possible to prove the conformity of this software after
the user has integrated the software into his device and
commissions HCF or a certified company to carry out this test.
Under no circumstances am I, Walter Borst, responsible for
carrying out such tests. Nor am I responsible for correcting any
deficiencies resulting from such a test.

Copyright

Copyright, Walter Borst, 2006-2024
Kapitaen-Alexander-Strasse 39, 27472 Cuxhaven, GERMANY
Fon: +49 (0)4721 6985100, Fax: +49 (0)4721 6985102
E-Mail: info@borst-automation.de

Home: https://www.borst-automation.de/

No Warranty

Walter Borst expressly disclaims any warranty for the software
package. This software package and related documents are
provided "As Is".

By using this software package, the user agrees that no event
shall Borst Automation or Walter Borst make responsible or
liable for damages whatsoever. This includes, without limitation,
damages for loss of business profits, loss due to business
interruption, loss of business information, or any other
pecuniary loss, arising out of the use of or the inability to use
this software package.

Legal Issues

Hart Slave C++ 7.6 / 23.6.2024 Page 12 of 12

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
mailto:info@borst-automation.de
https://www.borst-automation.de/

	Hart Slave Stack C++ 7.6
	Introduction
	Implemented Commands
	Architecture

	Hart Slave C++ Code
	User Interface
	Public Functions
	Data Interface

	Coding Considerations
	Hardware Abstraction
	Embedded System Requirements
	Coding Conventions

	Visual Studio 2022
	Test Environment
	Prerequisites
	Development Directory Structure

	Getting Started
	Test Interface

	Appendix
	Internet Links
	Download Location
	Legal Issues
	Conformity
	Copyright
	No Warranty

